Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2290344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38116652

RESUMO

Bifidobacterium longum subsp. infantis is a prevalent member of the gut microbiota of breastfed infants. In this study, the effects of human breastmilk-derived B.longum subsp. infantis CCFM1269 on bone formation in developing BALB/c mice were investigated. Newborn female and male mice were assigned to control group (administered saline), CCFM11269 group (administered B. longum subsp. infantis CCFM1269, 1 × 109 CFU/mouse/day) and I5TI group (administered B. longum subsp. infantis I5TI, 1 × 109 CFU/mouse/day) from 1-week-old to 3-, 4- and 5-week old. B. longum subsp. infantis I5TI served as a negative control in this study. The results demonstrated that B. longum subsp. infantis CCFM1269 promoted bone formation in growing mice by modulating the composition of the gut microbiota and metabolites. The expression of genes and proteins in the PI3K/AKT pathway was stimulated by B. longum subsp. infantis CCFM1269 through the GH/IGF-1 axis in growing mice. This finding suggests B. longum subsp. infantis CCFM1269 may be useful for modulating bone metabolism during growth.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Leite Humano , Osteogênese , Animais , Feminino , Humanos , Lactente , Masculino , Camundongos , Bifidobacterium longum subspecies infantis , Leite Humano/microbiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
J Agric Food Chem ; 71(46): 17819-17832, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37906736

RESUMO

The immunomodulatory potential of certain bacterial strains suggests that they could be beneficial in the treatment of rheumatoid arthritis (RA). In this study, we investigated the effects of Bifidobacterium longum subsp. infantis B6MNI on the progression of collagen-induced arthritis (CIA) in rats as well as its influence on the gut microbiota and fecal metabolites. Forty-eight female Wistar rats were divided into six groups that included a B6MNI group with CIA and intragastrically administered B. longum subsp. infantis B6MNI (109 CFU/day/rat), a control group (CON), and a CIA group, both of which were intracardiacally administered the same volume of saline. Rats were sacrificed after short-term (ST, 4 weeks) or long-term (LT, 6 weeks) administration. The results indicate that B. longum subsp. infantis B6MNI can modulate the gut microbiota and fecal metabolites, including 5-hydroxyindole-3-acetic acid (5-HIAA), which in turn impacts the expression of Pim-1 and immune cell differentiation, then through the JAK-STAT3 pathway affects joint inflammation, regulates osteoclast differentiation factors, and delays the progression of RA. Our results also suggest that B. longum subsp. infantis B6MNI is most efficacious for the early or middle stages of RA.


Assuntos
Artrite Experimental , Bifidobacterium longum , Feminino , Ratos , Animais , Bifidobacterium/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Artrite Experimental/tratamento farmacológico , Ratos Wistar , Inflamação/tratamento farmacológico , Bifidobacterium longum/metabolismo
3.
mBio ; 14(5): e0202823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787568

RESUMO

IMPORTANCE: The bacterial wilt caused by the soil-borne phytopathogen Ralstonia solanacearum is one of the most destructive crop diseases. To achieve a successful infection, R. solanacearum has evolved an intricate regulatory network to orchestrate the expression of an arsenal of virulence factors and fine-tune the allocation of energy. However, despite the wealth of knowledge gained in the past decades, many players and connections are still missing from the network. The importance of our study lies in the identification of PhcX, a novel conserved global regulator with critical roles in modulating the virulence and metabolism of R. solanacearum. PhcX affects many well-characterized regulators and exhibits contrasting modes of regulation from the central regulator PhcA on a variety of virulence-associated traits and genes. Our findings add a valuable piece to the puzzle of how the pathogen regulates its proliferation and infection, which is critical for understanding its pathogenesis and developing disease control strategies.


Assuntos
Ralstonia solanacearum , Fatores de Virulência , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia
4.
J Agric Food Chem ; 70(46): 14665-14678, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36377740

RESUMO

This study focused on the effects of Bifidobacterium breve CCFM1078 on the intestinal barrier and systemic inflammation of collagen-induced arthritis (CIA) rats. Female rats were divided into three groups with daily intragastric administration of either saline (control group and model group) or B. breve CCFM1078 (CCFM1078 group, 3 × 109cfu/rat per day) for 5 weeks. In the Model and CCFM1078 groups, arthritis was induced by subcutaneous collagen injection. We found that B. breve CCFM1078 can repair the intestinal barrier, reduce LPS translocation, regulate gut microbiota composition, and increase short-chain fatty acids in the intestine. Then, it can reduce pro-inflammatory cytokines release, adjust immune dysfunction, and inhibit TLR4-MyD88-dependent pathways and downstream inflammatory pathways to alleviate joint inflammation in CIA rats. These findings suggest that B. breve CCFM1078 may alleviate joint inflammation by adjusting the profile of gut microbiota and enhancing the intestinal barrier.


Assuntos
Artrite Experimental , Bifidobacterium breve , Microbioma Gastrointestinal , Animais , Ratos , Feminino , Artrite Experimental/tratamento farmacológico , Intestinos , Inflamação/tratamento farmacológico
5.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077271

RESUMO

The infant gut microbiota is critical for promoting and maintaining early-life health. The study aimed to analyze the composition of sIgA-coated and sIgA-uncoated bacterial communities at genus level and lactobacilli and bifidobacterial communities at species level in human breast milk (HBM) and infant and maternal feces. Eleven pregnant women were recruited successfully. HBM; infant feces during colostrum, transition, and mature stages; and maternal feces within the mature stage were collected. sIgA-coated and sIgA-uncoated bacteria were separated with magnetic-activated cell sorting. Then, 16S rRNA sequencing, bifidobacterial groEL gene sequencing, and lactobacilli groEL gene sequencing were performed to analyze the bacterial community. PCoA revealed that the compositions of sIgA-coated and sIgA-uncoated bacteria were different among HBM and infant and maternal feces. Higher relative abundance of sIgA-uncoated Bifidobacterium was found in the three lactation stages in infant feces compared to the corresponding HBM, and a higher relative abundance of sIgA-uncoated Faecalibacterium was found in maternal feces compared to HBM and infant feces. For bifidobacterial community, sIgA-coated and sIgA-uncoated B. longum subsp. infantis and B. pseudocatenulatum was dominant in infant feces and maternal feces, respectively. The relative abundance of sIgA-uncoated B. longum subsp. infantis was significantly higher in infant feces compared to that in maternal feces. For the Lactobacillus community, L. paragasseri and L. mucosae were dominant in infant and maternal feces, respectively. HBM and infant and maternal feces showed distinct diversity and composition of both sIgA-coated and sIgA-uncoated bacteria at genus level. Infant and maternal feces showed similar composition of Bifidobacterium at species level. The same Bifidobacterium species could be detected both in sIgA-coated and -uncoated form. This article provided deeper understanding on the microbiota profile in HBM and infant and maternal feces.


Assuntos
Leite Humano , Mães , Bactérias/genética , Bifidobacterium/genética , Fezes/microbiologia , Feminino , Humanos , Imunoglobulina A Secretora , Lactente , Intestinos/microbiologia , Lactobacillus/genética , Leite Humano/microbiologia , Gravidez , RNA Ribossômico 16S/genética
6.
Mater Horiz ; 9(9): 2416-2424, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35822671

RESUMO

Defects, such as uncontrollable vacancies, will intensively degrade the material properties and device performance of CVD-grown transition metal dichalcogenides (TMDs). Although vacancies can be repaired by some post-processing measures, these treatments are usually time-consuming, complicated and may introduce uncontrollable chemical contaminants into TMDs. How to efficiently suppress the uncontrollable defects during CVD growth and acquire intrinsic high-quality CVD-grown TMDs without any after-treatment remains a critical challenge, and has not yet been well resolved. Here, an alternate-growth-etching (AGE) CVD method was demonstrated to fabricate defect-suppressed submillimeter-scale monolayer WS2 single crystals. Compared with normal CVD, the grain size of the as-grown WS2 can be enlarged by 4-5 times (∼520 µm) and the growth rate of ∼14.4 µm min-1 is also at a high level compared to reported results. Moreover, AGE-CVD can efficiently suppress atomic vacancies in WS2. In every growth-etching cycle, the etching of WS2 occurs preferentially at the defective sites, which will be healed at the following growth stage. As a result, WS2 monolayers obtained by AGE-CVD possess higher crystal quality, carrier mobility (8.3 cm2 V-1 s-1) and PL quantum yield (QY, 52.6%) than those by normal CVD. In particular, such a PL QY is the highest value ever reported for in situ CVD-grown TMDs without any after-treatment, and is even comparable to the values of mechanically exfoliated samples. This AGE-CVD method is also appropriate for the synthesis of other high-quality TMD single crystals on a large-scale.

7.
Adv Mater ; 34(1): e2106923, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626038

RESUMO

Gallium oxide (Ga2 O3 ), with an ultrawide bandgap, is currently regarded as one of the most promising materials for solar-blind photodetectors (SBPDs), which are greatly demanded in harsh environment, such as space exploration and flame prewarning. However, realization of high-performance SBPDs with high tolerance toward harsh environments based on low-cost Ga2 O3 material faces great challenges. Here, defect and doping (DD) engineering towards amorphous GaOX (a-GaOX ) has been proposed to obtain ultrasensitive SBPDs for harsh condition application. Serious oxygen deficiency and doping compensation of the engineered a-GaOX film ensure the high response currents and low dark currents, respectively. Annealing item in nitrogen of DD engineering also incurs the recrystallization of material, formation of nanopores by oxygen escape, and suppression of sub-bandgap defect states. As a result, the tailored GaOX SBPD based on DD engineering not only harvests a record-high responsivity rejection ratio (R254 nm /R365 nm ) of 1.8 × 107 , 102 times higher detectivity, and 2 × 102 times faster decay speed than the control device, but also keeps a high responsivity, high photo-to-dark current ratio, and sharp imaging capability even at high temperature (280 °C) or high bias (100 V). The proposed DD engineering provides an effective strategy towards highly harsh-environment-resistant GaOX SBPDs.

8.
Front Immunol ; 12: 746585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721416

RESUMO

Irritable bowel syndrome with diarrhea and functional diarrhea are both functional bowel disorders that cause chronic diarrhea. Chronic diarrhea is closely related to daily life and the psychological condition of diarrhea in patients, and probiotics can play a significant role in alleviating chronic diarrhea in some research. Lactobaccilus plantarum CCFM1143 can relieve diarrhea in mice caused by enterotoxigenic Escherichia coli (ETEC); however, its clinical effects remain unclear. This study aimed to assess the effects of CCFM1143 as a therapy for chronic diarrhea patients. Fifty-five patients with chronic diarrhea were randomly assigned into the probiotic group (n = 28) and the placebo group (n = 27), receiving the routine regimen with or without probiotics for 4 weeks, respectively. CCFM1143 can mitigate the apparent clinical symptoms and improve the health status and quality of life of patients. In addition, it could inhibit the increase in interleukin 6 (IL-6) and the decrease in motilin; modulate the short-chain fatty acids, especially acetic and propionic acids; and regulate the gut microbiota, particularly reducing the abundance of Bacteroides and Eggerthella and enriching the abundance of Akkermansia, Anaerostipes, and Terrisporobacter. In addition, treatment with probiotics showed clinical effectiveness in managing chronic diarrhea when compared with the placebo group. The findings could help to develop and further the application of probiotics for chronic diarrhea.


Assuntos
Diarreia , Suplementos Nutricionais , Microbioma Gastrointestinal , Lactobacillus plantarum , Probióticos/uso terapêutico , Adulto , Doença Crônica , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Microorganisms ; 9(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576890

RESUMO

The infant gut microbiota plays a critical role in early life growth and derives mainly from maternal gut and breast milk. This study aimed to analyze the differences in the gut microbiota, namely Bifidobacterium and Lactobacillus communities at species level among breast milk as well as maternal and infant feces at different time points after delivery. Fifty-one mother-infant pairs from Indonesia were recruited, and the breast milk and maternal and infant feces were collected and analyzed by high throughput sequencing (16S rRNA, Bifidobacterium groEL and Lactobacillus groEL genes). PCoA results showed bacterial composition was different among breast milk and maternal and infant feces within the first two years. The abundance of Bifidobacterium and Bacteroides were significantly higher in infant feces compared to their maternal feces from birth to two years of age, and maternal breast milk within six months after birth (p < 0.05), whereas the abundance of Blautia, Prevotella, and Faecalibacterium was higher in maternal feces compared to that in breast milk within six months and infant feces within one year after birth, respectively (p < 0.05). The relative abundances of Bacteroides and Lactobacillus was higher and lower in infant feces compared to that in maternal feces only between one and two years of age, respectively (p < 0.05). For Bifidobacterium community at species level, B. adolescentis, B. ruminantium, B. longum subsp. infantis, B. bifidum, and B. pseudolongum were identified in all samples. However, the profile of Bifidobacterium was different between maternal and infant feces at different ages. The relative abundances of B. adolescentis and B. ruminantium were higher in maternal feces compared to those in infant feces from birth to one year of age (p < 0.05), while the relative abundances of B. longum subsp. infantis and B. bifidum were higher in infant feces compared to those in maternal feces beyond three months, and the relative abundance of B. pseudolongum was only higher in infant feces between three and six months (p < 0.05). For Lactobacillus community, L. paragasseri showed higher relative abundance in infant feces when the infant was younger than one year of age (p < 0.05). This study showed bacterial composition at the genus level and Bifidobacterium and Lactobacillus communities at the species level were stage specific in maternal breast milk as well as and maternal and infant feces.

10.
Nanomicro Lett ; 13(1): 164, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342729

RESUMO

Metal oxide thin-films transistors (TFTs) produced from solution-based printing techniques can lead to large-area electronics with low cost. However, the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the "coffee-ring" effect. Here, we report a novel approach to print high-performance indium tin oxide (ITO)-based TFTs and logic inverters by taking advantage of such notorious effect. ITO has high electrical conductivity and is generally used as an electrode material. However, by reducing the film thickness down to nanometers scale, the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors. The ultrathin (~10-nm-thick) ITO film in the center of the coffee-ring worked as semiconducting channels, while the thick ITO ridges (>18-nm-thick) served as the contact electrodes. The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V-1 s-1 and a low subthreshold swing of 105 mV dec-1. In addition, the devices exhibited excellent electrical stability under positive bias illumination stress (PBIS, ΔVth = 0.31 V) and negative bias illuminaiton stress (NBIS, ΔVth = -0.29 V) after 10,000 s voltage bias tests. More remarkably, fully printed n-type metal-oxide-semiconductor (NMOS) inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V, promising for advanced electronics applications.

11.
Gut Microbes ; 13(1): 1-13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847206

RESUMO

Microbiota especially Bifidobacterium play an important role in adjusting and maintaining homeostatic balance within the infant intestine. The aim of this study was to elucidate the relationship between maternal and infant gut microbiota and identify the Bifidobacterium species that may transfer from mother to infant over the first 42 days of the infant's life. Nineteen mother-infant-pair fecal samples were collected and the diversity and composition of the total bacterial and Bifidobacterium communities were analyzed via 16S rDNA and bifidobacterial groEL gene high throughput sequencing. The results revealed that the relative abundance of Bifidobacterium was significantly higher in the infant gut while Parabacteroides, Blautia, Coprococcus, Lachnospira and Faecalibacterium were at lower relative abundance in 7-day and 42-day infant fecal samples compared to the maternal samples. The maternal gut has more B. pseudocatenulatum. In the infant group, B. breve and B. dentium relative abundance increased while B. animalis subsp. lactis decreased from days 7 to 42. Additionally, B. longum subsp. longum isolated from FGZ16 and FGZ35 may have transferred from mother to infant and colonized the infant gut. The results of the current study provide insight toward the infant gut microbiota composition and structure during the first 42 days and may help guide Bifidobacterium supplementation strategies in mothers and infants.


Assuntos
Bactérias/classificação , Bifidobacterium , Fezes/microbiologia , Microbioma Gastrointestinal , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano , Feminino , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Mães , Gravidez , RNA Ribossômico 16S , Vagina/microbiologia
12.
J Dairy Sci ; 104(4): 3863-3875, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33612242

RESUMO

Lactobacilli, commonly present in human breast milk, appear to colonize the neonatal gut and provide protection to infants against various infections, thereby promoting immune development. This study examined the potential probiotic role of breast milk-derived Lactobacillus reuteri FN041 in immune development in mice. The FN041 were gavaged either to BALB/c dams (n = 6/group) during the lactation period or to their offspring (n = 6/sex per intervention) after weaning separately (cointervention). All interventions induced increased intestinal barriers in 5-wk-old offspring, especially in the females. Immunoglobulin A plasmocytes in ileal tissue and secretory IgA (sIgA) in ileal contents increased in all 5-wk-old offspring of cointervention. The activation of mRNA expression of 17 genes was sex-dependent, especially in 5-wk-old offspring. Broader genes were regulated in female mice. The effect of cointervention on the Shannon index of total microbiota is sex-related. The Shannon index of sIgA-coated microbiota increased in both sexes. The sIgA-coated microbiota showed intergroup differences according to ß diversity, especially in female mice that showed an increase in Bifidobacterium of Actinobacteria. The sIgA-coated Bifidobacterium was positively correlated with mRNA expression of Tlr9. The sIgA-coated Lactobacillus in male offspring was negatively correlated with mRNA expression of Cldn2. In conclusion, L. reuteri FN041 promoted the production of intestinal sIgA and the expression of genes related to antimicrobial peptides in the offspring and enhanced the function of the mucosal barrier, depending on sex and treatment manner.


Assuntos
Limosilactobacillus reuteri , Probióticos , Animais , Feminino , Humanos , Imunoglobulina A Secretora , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Leite Humano
13.
Trends Microbiol ; 29(8): 725-735, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33602613

RESUMO

Gut microbiota transmission from mother to offspring has attracted much interest in recent years. The gut microbiota in the infant plays a potentially significant role in modulating and maintaining the development of infant immunity. Secretory immunoglobulin A (sIgA), the major immunoglobulin in the intestine, can target polysaccharides and flagellin on the bacterial surface, resulting in sIgA-coated bacteria. The presentation of specific bacteria coated with sIgA may be a signal of disease and provide novel insights into the relationship between infant microbiota and disease. Here, we review the composition of sIgA-coated bacteria in the adult intestine, human milk, and the infant intestine, as well as the factors that influence the development of gut microbiota in early life. Then, we highlight the diseases that are related to variations in sIgA-coated bacteria in the infant and adult intestine. Furthermore, we discuss the possibility that sIgA-coated bacteria could play a role in mediating both innate and adaptive immune responses. Finally, we propose directions for future research to promote our understanding within this field.


Assuntos
Bactérias/imunologia , Bactérias/metabolismo , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina A Secretora/metabolismo , Bactérias/genética , Translocação Bacteriana , Microbioma Gastrointestinal/genética , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Mucosa Intestinal/imunologia
14.
Food Funct ; 10(2): 554-564, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30681124

RESUMO

Breast milk bacteria play an important role in the early development of the gut microbiota and the immune system. Dominant living bacteria of 89 healthy Chinese women from 11 cities in five regions were analysed by broad-range yeast extract, casitone, and fatty acid and de Man, Rogosa, and Sharpe-based culturing coupled with 16S rRNA sequence and quantitative polymerase chain reaction. Principal coordinate analysis showed that human breast milk samples were classified into three groups, driven by Enterococcus (abundance in group 1, 63.13%), Streptococcus (abundance in group 2, 68.16%) and Staphylococcus (abundance in group 3, 55.17%). The microbiota profile was highly region-specific. Samples from the Northwest and North of China showed higher alpha diversity compared to other regions (p < 0.05). Staphylococcus, Streptococcus, and Enterococcus were the dominant genera in all samples. Lactobacillus had a high occurrence in samples from the Northwest and North, dominated by Lactobacillus reuteri and Lactobacillus gasseri. Samples of mothers with a high postpartum body mass index showed more Staphylococcus and less Lactobacillus and Streptococcus. Staphylococcus was negatively correlated with Lactobacillus and Streptococcus. The mode of delivery also affected the composition of microbiota, even after culture. These findings indicate differences between the North and South, provide effective information for collection of samples in which Lactobacillus is the predominant genus, and lower the detection limit for small amounts of bacteria.


Assuntos
Bactérias/isolamento & purificação , Microbiota/genética , Leite Humano/microbiologia , Adulto , Bactérias/genética , China , Demografia , Feminino , Humanos , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...